High-Order Simulation of Polymorphic Crystallization Using Weighted Essentially Nonoscillatory Methods

نویسندگان

  • Martin Wijaya Hermanto
  • Richard D. Braatz
  • Min-Sen Chiu
چکیده

Most pharmaceutical manufacturing processes include a series of crystallization processes to increase purity with the last crystallization used to produce crystals of desired size, shape, and crystal form. The fact that different crystal forms (known as polymorphs) can have vastly different characteristics has motivated efforts to understand, simulate, and control polymorphic crystallization processes. This article proposes the use of weighted essentially nonoscillatory (WENO) methods for the numerical simulation of population balance models (PBMs) for crystallization processes, which provide much higher order accuracy than previously considered methods for simulating PBMs, and also excellent accuracy for sharp or discontinuous distributions. Three different WENO methods are shown to provide substantial reductions in numerical diffusion or dispersion compared with the other finite difference and finite volume methods described in the literature for solving PBMs, in an application to the polymorphic crystallization of L-glutamic acid. 2008 American Institute of Chemical Engineers AIChE J, 55: 122–131, 2009

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENO and WENO Schemes

The weighted essentially nonoscillatory (WENO) schemes, based on the successful essentially nonoscillatory (ENO) schemes with additional advantages, are a popular class of high-order accurate numerical methods for hyperbolic partial differential equations (PDEs) and other convection-dominated problems. The main advantage of such schemes is their capability to achieve arbitrarily high-order form...

متن کامل

Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws

The simulation of turbulent compressible flows requires an algorithm with high accuracy and spectral resolution to capture different length scales, as well as nonoscillatory behavior across discontinuities like shock waves. Compact schemes have the desired resolution properties and thus, coupled with a nonoscillatory limiter, are ideal candidates for the numerical solution of such flows. A clas...

متن کامل

Large Eddy Simulation of Circular Cylinder Flow by Using Higher Order WENO Schemes

This paper investigates the feasibility of a high order finite difference weighted essentially nonoscillatory(WENO) scheme for large eddy simulations(LES) with implicit subgrid scale model. In this paper, the 5th-order WENO scheme with a conservative 4th-order central differencing for viscous terms are used to simulate the flow past a circular cylinder at ReD = 3900. The turbulent effects near ...

متن کامل

Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations

To easily generalize the maximum-principle-satisfying schemes for scalar conservation laws in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229 (2010), pp. 3091–3120] to convection diffusion equations, we propose a nonconventional high order finite volume weighted essentially nonoscillatory (WENO) scheme which can be proved maximum-principle-satisfying. Two-dimensional extensions are straightforwa...

متن کامل

A Weighted Essentially Nonoscillatory, Large Time-Step Scheme for Hamilton-Jacobi Equations

We investigate the application of weighted essentially nonoscillatory (WENO) reconstructions to a class of semi-Lagrangian schemes for first order time-dependent Hamilton–Jacobi equations. In particular, we derive a general form of the scheme, study sufficient conditions for its convergence with high-order reconstructions, and perform numerical tests to study its efficiency. In addition, we pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008